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We propose a novel quantum spin liquid state that can explain many of the intriguing experimental

properties of the low-temperature phase of the organic spin liquid candidate materials

�-ðBEDT-TTFÞ2Cu2ðCNÞ3 and EtMe3Sb½PdðdmitÞ2�2. This state of paired fermionic spinons preserves

all symmetries of the system, and it has a gapless excitation spectrum with quadratic bands that touch at

momentum ~k ¼ 0. This quadratic band touching is protected by symmetries. Using variational

Monte Carlo techniques, we show that this state has highly competitive energy in the triangular lattice

Heisenberg model supplemented with a realistically large ring-exchange term.
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Quantum spin liquids are exotic phases of quantum spin
systems which break no global symmetries even when
thermal fluctuations are completely suppressed at zero
temperature [1,2]. In the last decade, candidates of gapless
spin liquid phases have been discovered in various experi-
mental systems, including �-ðBEDT-TTFÞ2Cu2ðCNÞ3
[3–5], EtMe3Sb½PdðdmitÞ2�2 [6–8], Ba3CuSb2O9 [9],
Ba3NiSb2O9 [10], and ZnCu3ðOHÞ6Cl2 [11–13]. In all
these materials, no evidence of magnetic order was found
at temperatures much lower than the spin interaction en-
ergy scale of the system. In this Letter, we will focus on the
organic spin liquid materials �-ðBEDT-TTFÞ2Cu2ðCNÞ3
(�-BEDT) and EtMe3Sb½PdðdmitÞ2�2 (DMIT). These ma-
terials are quasi-two-dimensional Mott insulators which
are close to a Mott metal-insulator transition [5], and
thus, exhibit substantial local charge fluctuations. An ef-
fective spin model that may well describe the magnetic
properties of these ‘‘weak’’ Mott insulators involves sup-
plementing the usual (possibly extended) Heisenberg
model with a four-site ring-exchange term [14,15]. Here,
we consider the following Hamiltonian:

H ¼ J1
X

hi;ji
2 ~Si � ~Sj þ J2

X

hhi;jii
2 ~Si � ~Sj þK

X

hi;j;k;li
ðPijkl þH:c:Þ;

(1)

where the sums hi; ji and hhi; jii go over all first- and
second-neighbor links of the triangular lattice, respectively,
while hi; j; k; li goes over all elementary four-site rhombi;
Pijkl rotates the spin configurations around a given rhom-

bus. In what follows, we set J1 ¼ 1 as the unit of energy.
The two different organic spin liquids �-BEDT and

DMIT share two universal properties. (1) At low tempera-
tures, despite the fact that the system is still a Mott insu-
lator for charge transport, the specific heat scales linearly
with temperature: Cv ¼ �T. Furthermore, � is essentially
independent of a moderate external magnetic field [3].
(2) The spin susceptibility shows no magnetic phase

transition at any finite temperature, and it saturates to a
finite constant � at zero temperature [4].
These two phenomena are completely inconsistent with

any semiclassical magnetic state and are strongly sugges-
tive of the existence of a highly nontrivial quantum disor-
dered phase. They also demonstrate the presence of a large
density of charge-neutral excitations at low temperature.
To date, four main theoretical scenarios have been pro-
posed to describe these experimental facts.
(1) In the U(1) spinon Fermi surface state [14,16], a

fermionic spinon fj� is introduced by decomposing the

physical spin operator as ~Sj ¼ ð1=2ÞP�;�¼";#f
y
j� ~���fj�

and taking the spinons to fill an ordinary Fermi sea at the
mean-field level. This gives rise to a finite density of states,
consistent with the experimental results mentioned above.
Furthermore, it has been demonstrated that for strong
enough ring exchange K, the spinon Fermi sea state has
very competitive variational energy in the microscopic spin
model (1) [14]. However, once we go beyond the mean-
field level, the U(1) gauge fluctuation will acquire singular
overdamped dynamics j!j � k3 due to its coupling with
the Fermi surface [17]. This singular dynamics generates
an even larger density of states at low temperature, which

leads to a singular specific heat Cv � T2=3. This specific
heat behavior is not observed experimentally.
(2) The most natural way to suppress the U(1) gauge

fluctuation is to condense Cooper pairs of spinons and,
thus, break the U(1) gauge fluctuation down to a fully
gapped Z2 gauge fluctuation. This possibility has been
explored numerically in Ref. [18], where the authors con-
cluded that the particular pairing pattern that is energeti-
cally favored by Eq. (1) has nodal dx2�y2-wave structure.

However, this nodal d-wave pairing not only suppresses
the gauge fluctuation, it also significantly suppresses the
fermion density of states, and the system will no longer
have finite � and � at low temperature, unless sufficient
disorder is turned on.
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(3) Another very different approach was taken in
Ref. [19], where the authors proposed that �-BEDT is a
Z2 spin liquid which is very close to the condensation
quantum critical point of bosonic spinons. This quantum
critical behavior is consistent with the NMR relaxation rate
observed experimentally [20]. In particular, the small en-
ergy gap seen in thermal conductivity data [21] was iden-
tified with the gap of the topological defect of the Z2 spin
liquid [19]. However, no parent spin Hamiltonian has been
found for this state so far. Thus, it is unknown whether this
quantum critical spin liquid can be realized in any experi-
mentally relevant lattice model.

(4) A novel Majorana slave fermion formalism was
introduced in Ref. [22], where the authors proposed that
the ground state of the organic spin liquids has a Majorana
Fermi surface. But, just like the previous theory, so far it is
unclear in which lattice model this spin liquid can be
realized.

In this Letter, we propose an entirely new spin liquid. In
Ref. [23], possible Z2 spin liquids with an extended spinon
Fermi surface were summarized. However, the spin liquid
state proposed in the present Letter is beyond the ones
discussed in Ref. [23]. Our novel state has no spinon Fermi
surface, but has a quadratic band touching (QBT) of fer-
mionic spinons that is protected by the symmetry of the
model: !��k2. In two dimensions, a quadratic band
touching leads to a finite constant density of states, which
automatically gives finite � and � at zero temperature.
Besides being consistent with the major experimental facts
of the organic spin liquid compounds, this state has the five
following advantages. (1) As we will show below, this state
is a very competitive variational ground state for model (1)
in the physically relevant regime 0:1&K&0:15 and J2’0
(see Fig. 1). (2) The gauge fluctuation for this state is
fully gapped, and hence plays no role at low energy.

Most field-theoretic calculations based on this state are,
thus, well approximated at the mean-field level, and so, in
contrast to the spinon Fermi surface state [24], they are
well controlled. (3) Finite � and � are generic properties of
our QBT spin liquid. In contrast to the spinon Fermi
surface state, these properties are both robust in the pres-
ence of gauge fluctuations, and unlike the nodal d-wave
state, they do not rely on disorder. (4) A very small energy
gap, much smaller than the Heisenberg exchange J1, was
observed by thermal conductivity measurements in
�-BEDT [21]. This small gap can be very elegantly
explained by our QBT spin liquid without fine-tuning: an
allowed short-range spinon interaction on top of our mean-
field state may be marginally relevant, and thus, naturally
open up an exponentially small gap. (5) Since the gauge
field fluctuation is fully gapped in our spin liquid, it does
not respond to an external magnetic field. Thus, our state
has no obvious thermal Hall effect, which is consistent
with experiments [25].
Let us first describe the QBT spin liquid state. We take

the standard slave fermion (spinon) representation of

spin-1=2 operators: ~Sj ¼ ð1=2ÞP�;�¼";#f
y
j� ~���fj�. The

physical spin-1=2 Hilbert space is then recovered by

imposing the on-site constraint
P

�f
y
j�fj� ¼ 1, which

introduces an SU(2) gauge symmetry to the low-energy
dynamics of the spinons [26]. However, this SU(2) gauge
symmetry will generally be broken by the mean-field
dynamics, which can be described by a quadratic
Hamiltonian of the form

HMF ¼ �X

i;j

½tijfyi�fj� þ ð�ijf
y
i"f

y
j# þ H:c:Þ�: (2)

The QBT spin liquid at the focus of this Letter corre-
sponds to a mean-field Ansatz for the spinons with dþ id
pairing and vanishing hopping

tij ¼ 0; �j;jþê ¼ �ðex þ ieyÞ2: (3)

Here, ê is a first-neighbor unit vector of the triangular
lattice. This mean-field Ansatz breaks the SU(2) gauge
symmetry down to Z2: f� � �f�. Thus, gauge fluctua-
tions can be ignored in the low-energy dynamics of the
system.
It is convenient to introduce a complex spinor c defined

as ðc 1; c 2Þ ¼ ðf"; fy# Þ. Expanded at the � point ~k ¼ 0, the

low-energy Hamiltonian for the mean-field Ansatz men-
tioned above reads

H0 ¼ c yf��xð@2x � @2yÞ þ 2�y@x@ygc : (4)

This mean-field Hamiltonian has a quadratic band touching

at ~k ¼ 0, which leads to a finite density of states in two
dimensions. We propose that this finite density of states is
responsible for finite � and � observed experimentally in
�-BEDT and DMIT. A similar QBT spin liquid state for the
spin-1materialBa3NiSb2O9 [10]was proposed inRef. [27].

FIG. 1 (color online). Variational phase diagram of the spin
Hamiltonian, Eq. (1). We propose that the dþ id QBT spin
liquid phase is a very strong candidate for the ground state of
�-BEDT and DMIT in the parameter range J2 ’ 0 and K ’ 0:13.
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In addition to the quadratic band touching at ~k ¼ 0,
there are also Dirac fermions at the corners of the

Brillouin zone: ~QA;B ¼ �ð4�=3; 0Þ. Complex Dirac fer-

mion fields c A;B at momenta ~QA;B can be defined as

c ¼ c A expði ~QA � ~rÞ þ c B expði ~QB � ~rÞ. The low-energy
Hamiltonian for c A;B reads

H�ð4�=3;0Þ ¼
X

a¼A;B

c y
a ð�i�x@x � i�y@yÞc a: (5)

At low temperature, the contribution of these Dirac fermi-
ons to � and � is much smaller than the one resulting from
the quadratic band touching at the � point.

The spinon carries a projective representation of the
physical symmetry group. In the Supplemental Material
[28], we demonstrate that the mean-field QBT Ansatz
discussed above preserves all the symmetries of the model
(including the spin symmetry, triangular lattice symmetry,
and time-reversal symmetry). As long as these symmetries
are preserved, no relevant fermion bilinear terms can be
added to Eqs. (4) and (5), and the low-energy dynamics is
stable.

Let us now go beyond the mean field. As mentioned
above, the mean-field Ansatz breaks the gauge symmetry
down to Z2, and the gauge fluctuations are, thus, quite
harmless. But, besides the gauge fluctuation, local short-
range four-fermion interactions exist at both the Dirac

points ~QA;B and the QBT � point. At the � point, only the

following four-fermion interaction needs to be considered:

H4 ¼ �gfy" f"f
y
# f# � gc y

1 c 1c
y
2 c 2: (6)

The renormalization group flow of this term is very simple:
depending on the sign of g, H4 can be either marginally
relevant or irrelevant [29]. When it is relevant (g > 0), the
system spontaneously breaks time-reversal symmetry (it
becomes a chiral spin liquid) and opens up an exponentially

small gap at the � point: mfy�f� ¼ mc y�zc . We identify
this fluctuation generated gap with the small gap observed
by thermal conductivity in �-BEDT [21].

In DMIT, on the other hand, thermal conductivity mea-
surements indicate that the system is gapless at the lowest
temperature [25]. Thus, we conjecture that DMIT corre-
sponds to the case with a marginally irrelevant H4 (g < 0),
while �-BEDT corresponds to g > 0. The thermal conduc-
tivity behavior with negative g will be studied in detail in
the future [30], taking into account both interaction and
disorder effects.

Inspired by previous works [14,18,31–33], we now
revisit the variational phase diagram of model (1) using a
wide range of correlated spin wave functions. The qua-
dratic Hamiltonian, Eq. (2), allows straightforward con-
struction of spin liquid wave functions by Gutzwiller
projecting its ground state j�0i. That is, we use as varia-
tional states j�ðftijg;f�ijgÞi¼PGPNj�0i, where PN is a

projector to a state with N spinons, and N is the number of

lattice sites (N" ¼N# ¼N=2). PG¼
Q

j½1�nj#nj"� is the

Gutzwiller projector which removes unphysical states con-
taining doubly occupied sites. We fix the spinon chemical
potential 	 ¼ tjj such that j�0i is half filled on average

before projection, but other parameters in (2) are used as
variational parameters. The evaluation of expectation val-
ues in such fermionic wave functions can be done effi-
ciently and with high accuracy using variational
Monte Carlo techniques [33–35]. For competing long-
range ordered states, we use Jastrow-type wave functions
as pioneered by Huse and Elser [36] (see the Supplemental
Material [28] for more details on all states we studied).
We first consider the case with J2 ¼ 0 in Eq. (1). Since

the seminal work of Motrunich [14], it has been known that
the U(1) projected Fermi sea state (or ‘‘spin Bose metal’’
[31]) with isotropic nearest-neighbor tij ¼ t and �ij ¼ 0

has remarkably good variational energy and is clearly the
best fermionic trial state for relatively large ring exchange
K * 0:3. This state is also consistent with recent large-
scale density matrix renormalization group calculations on
the four-leg ladder [32]. On the other hand, exact diago-
nalization studies [37] indicate that the 120� antiferromag-
netic (AFM) order, which is believed to characterize the
ground state of the Heisenberg model at K ¼ 0 [36,38,39],
is destroyed at much smaller ring exchange K * 0:1.
Therefore, an intermediate spin liquid phase in the parame-
ter regime 0:1 & K & 0:3 may well be present in the
model, and is likely to be relevant for the organic
compounds.
The most natural candidate states are Z2 spin liquids

with finite spinon pairing �ij � 0 in (2). Indeed, it has

been known since the work of Motrunich that, in the
intermediate parameter regime of Eq. (1), such projected
Bardeen-Cooper-Schrieffer states do have significantly
lower energy than the 120� AFM and U(1) Fermi sea
states. However, the nature of the spinon pairing pattern
in this putative Z2 spin liquid was still up for debate. In this
Letter, we perform accurate large-scale simulations up to
30� 30 lattice sites to check all singlet (�ij ¼ �ji) and

triplet (�ij ¼ ��ji) pairing instabilities (s, p, pþ ip, d,

dþ id, and f-wave) of the U(1) Fermi sea state in model
(1). We find the remarkable result that for 0:1 & K & 0:15
our QBT dþ id state, as discussed above, is highly com-
petitive, and perhaps has the lowest energy of any projected
fermionic trial state, including the nodal d-wave state of
Ref. [18].
The results of our variational study at J2 ¼ 0 are sum-

marized in Fig. 2. Consistent with Refs. [14,18], we find
that the unpaired U(1) Fermi sea (FS) state and states with
nodal d-wave and dþ id pairing symmetries are the most
competitive spin liquid wave functions for this model. The
gap functions for the dþ id and nodal d-wave states are

given by �ðdþidÞ
j;jþê ¼�ðexþ ieyÞ2 and �ðnodaldÞ

j;jþê ¼�ðe2x�e2yÞ,
respectively, where ê is a unit vector connecting nearest
neighbors on the triangular lattice. Each of these Ansätze,
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thus, has one variational parameter �=t which we parame-
trize by � ¼ tan�1ð�=tÞ. In the top panel of Fig. 2, we
show the optimal energies per site, Eminimum, versus ring
exchange K for the dþ id, nodal d wave, U(1) FS, and
120� AFM states. In the bottom panel, we show the cor-
responding optimal � for both the dþ id and nodal
d-wave states. We see that the 120� AFM state wins for
K & 0:1; however, immediately upon exiting the 120�
phase for 0:1 & K & 0:15, the dþ id and nodal d-wave
states are extremely close in energy and are basically
degenerate within statistical error. Remarkably, as seen in
the bottom panel of Fig. 2, the optimal dþ id state in the
entire range 0:1 & K & 0:17 is in fact our exotic QBT state
of interest, that is, �=t ! 1, � ¼ �=2. For still larger K,
0:15 & K & 0:25, the optimal Ansatz is the nodal d-wave
state, a result which is consistent with Ref. [18]. Finally, for
K * 0:25, the optimal pairing amplitude � ! 0 for all
spin liquid states, thus, describing a crossover to the U(1)
Fermi sea state of Refs. [14,31,32].

In the inset of the bottom panel of Fig. 2, we plot the
variational energies per site versus � at the point K ¼ 0:13
in the spin liquid phase. Interestingly, there are two local

minima for the dþ id Ansätze: the first minimum at small
� & t is smoothly connected to the U(1) Fermi sea state at
� ¼ 0, while the second minimum at �=t ! 1 is the
qualitatively new QBT state at the focus of our work. For
0:1 & K & 0:17, the latter is lower in energy than the
former, but is almost degenerate with the optimal nodal
d-wave state which always has small � & t. Indeed, the
two local minima in the dþ id Ansatz are already present
in the pure Heisenberg model (K ¼ J2 ¼ 0), with a
large-� state (� ¼ 0:44, �=t ¼ 5:2) having minimum
energy. Furthermore, the QBT state at � ¼ �=2 has sur-
prisingly low ring-term expectation value, and this con-
spires with the good Heisenberg energy of the generic
large-� dþ id state to make the QBT state the optimal
fermionic spin liquid Ansatz in the parameter window
0:1 & K & 0:15. (For more details, see the Supplemental
Material [28]).
The authors of Ref. [18] concluded that the nodal

d-wave state is clearly the best variational ground state
for intermediate 0:1 & K & 0:15. We believe that there are
two reasons for this discrepancy with our result. First,
Ref. [18] considered only a restricted range of small �=t
for the dþ id Ansatz which excluded the QBT state alto-
gether. Second, our extensive finite-size analysis shows
that quite large lattice clusters (*18� 18 sites) are neces-
sary to get well converged expectation values for the nodal
d-wave state. Our calculations find poorly converged ex-
pectation values and strong dependencies on the spinon
boundary conditions for a nodal d-wave state on the small
10� 11 cluster that was used in [18].
Finally, we discuss the effect of a second-neighbor

interaction J2. In Fig. 1, we present a variational phase
diagram in the K-J2 plane. A ferromagnetic interaction
(J2 < 0) quickly favors the 120� AFM state over the QBT
dþ id state and destroys the spin liquid phase. On the
other hand, antiferromagnetic J2 > 0 strongly frustrates
the 120� AFM state and favors a nodal d-wave spin liquid.
Negative ring-exchange or larger values of J2 * 0:17 lead
to a collinear phase. In Fig. 1, around J2 ’ 0:05 and
K ’ �0:02, a small fully gapped dþ id phase with finite
�=t emerges. This is a chiral spin liquid with nontrivial
topological order [40,41]. Our preliminary results show
that this phase will expand significantly once an antiferro-
magnetic third-neighbor Heisenberg coupling J3 is added
to Eq. (1). More details on this phase will be elaborated in
future work.
The ability of the nodal d-wave state to beat the collinear

state for K ’ 0 may suggest (see Refs. [42,43]) that we are
overestimating the extent of the nodal d-wave state in our
phase diagram (see also the Supplemental Material [28]).
Of course, a variational study can never claim to have the
final say on the phase diagram of a given microscopic
model, and quantitative locations of phase boundaries
should not be taken too seriously. What is very robust,
however, is the statement that our QBT dþ id state has
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FIG. 2 (color online). Upper panel: Variational energies per
site for the Hamiltonian, Eq. (1), at J2 ¼ 0 as a function of K for
the most competitive trial states in our study; in the inset, we
show a zoom of the region of the phase diagram where the QBT
dþ id state is most competitive. Lower panel: The optimal
variational parameter � ¼ tan�1ð�=tÞ is plotted for the dþ id
and nodal d-wave states; in the inset, we show the variational
energies for all � at the point K ¼ 0:13 where the dashed line
indicates the energy of the QBT state.

PRL 111, 157203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 OCTOBER 2013

157203-4



both extremely competitive energetics in a realistic pa-
rameter regime and highly appealing phenomenology for
the organic spin liquid compounds.
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